Illustration to running workflow of web-server and standalone program



Description

PTFSpot: Deep co-learning on transcription factors and their binding regions attains impeccable universality in plants.

Running the standalone program

Requirements

  1. Python3
  2. Numpy
  3. keras
  4. tensorflow
  5. plotly
  6. pandas
  7. bayesian-optimization
  8. bedops
  9. Bedtools
  10. Alphafold2 generated PDB files

To build model implementing hyperparameter tuning

Example: python3 hyper_param.py file_for_tuning

Input file description

file_for_tuning = file containing label (0/1) and sequence (positive and negative instances). All in one line separated by tab for a single instance.
Label Sequence
1 TGATAAACAAAGTGTGTAACATCACCTCATCTACATGTGTGATTTTTTTTTTGAATATAGACAACTTTTTAGTCAGAGTAGTGAGTATAGTGAGTTTCTGTAGAGAAGCTCATCTTAGAATTATTCATGTATTCCACTACTAAAATGTATTCCACTACT
0 AGATCTACAAGAGAAGATAAGTTTGAGGCAAATTCGAGATCTGGAAGCTGGTTTTCTCTTTACAAATAACACTAACCCTACCATCAAATCAAGAAAGGAGGCTTTGAACAAATAGCTTGATTGAAGTATGAAGTGGCTCGGTGGGCGACGATGA

Output file description

param.txt = Optimized hyparameters for Transformers.
NameValue
learning_rate0.583
activationrelu
activation2selu
activation3LeakyRelu
batch_size40
embed_dim28
epochs20
num_heads14
ff_dim14
neurons38
neurons212
dropout_rate0.16
dropout_rate20.17
OptimizerAdadelta

ptfspot.h5 = Hyperparameter optimized trained model for transformer.

Note

Always place your Alphafold2 generated TF pdb file in "pdb" folder (an example is provided).

This project was executed within the Ubuntu Linux platform's Open Source OS environment

Running script

Module: Transformer-DenseNet system (identify TF regions within sequence with the corresponding Alphafold2 generated TF protein structure)

To detect the TF binding region, In parent directory execute following command:

Output description

TFbinding regions detection module gives output in following format

ABF2_genomic_sequence.txt = TF binding regions result (Final result: ID, Start, End).
Sequence IDStartEnd
seq130190
seq210170
seq321151
seq473233

To generate line plot, execute the following command:

python3 make-plot.py seq1.csv (generated plots are interactive)

An example of generated plot:




Python script to build model implementing hyperparameter tuning Python version 3.6 or higher Version 1.23.5 Version 2.13.1 Version 2.13.1 Version 5.11.0 Version 1.5.0 Version 1.2.0 sudo apt-get install bedops -y sudo apt-get install bedtools -y Alphafold2: https://alphafold.ebi.ac.uk/ Ubuntu: https://ubuntu.com/ python script to generate plots filename Complete execution shell script Name of the fasta sequence containing file Complete path of the folder which contains fasta file Name of the pdb file generated from Alphafold2 Complete path of the folder containing scripts of PTFSpot >seq
TGATAAACAAAGTGTGTAACATCACCTCATCTACATGTGTGATTTTTTTTTTGAATATAGACAACTTTTTAGTCAGAGT
AGTGAGTATAGTGAGTTTCTGTAGAGAAGCTCATCTTAGAATTATTCATGTATTCCACTACTAAAATGTATTCCACTAC
TAGATCTACAAGAGAAGATAAGTTTGAGGCAAATTCGAGATCTGGAAGCTGGTTTTCTCTTTACAAATAACACTAACCC
TACCATCAAATCAAGAAAGGAGGCTTTGAACAAATAGCTTGATTGAAGTATGAAGTGGCTCGGTGGGCGACGATGAGCA
Name of the TF pdb file without ".pdb" file_for_tuning = file containing label (0/1) and sequence (positive and negative instances). All in one line separated by tab for a single instance. Click to know more Click to download an example pdb file Click to expand Hyperparameter optimized trained model for transformer.